Leucine and insulin activate p70 S6 kinase through different pathways in human skeletal muscle.

نویسندگان

  • J S Greiwe
  • G Kwon
  • M L McDaniel
  • C F Semenkovich
چکیده

Amino acids and insulin have anabolic effects in skeletal muscle, but the mechanisms are poorly understood. To test the hypothesis that leucine and insulin stimulate translation initiation in human skeletal muscle by phosphorylating 70-kDa ribosomal protein S6 kinase (p70(S6k)), we infused healthy adults with leucine alone (n = 6), insulin alone (n = 6), or both leucine and insulin (n = 6) for 2 h. p70(S6k) and protein kinase B (PKB) serine(473) phosphorylation were measured in vastus lateralis muscles. Plasma leucine increased from approximately 116 to 343 micromol/l during the leucine-alone and leucine + insulin infusions. Plasma insulin increased to approximately 400 pmol/l during the insulin-alone and leucine + insulin infusions and was unchanged during the leucine-alone infusion. Phosphorylation of p70(S6k) increased 4-fold in response to leucine alone, 8-fold in response to insulin alone, and 18-fold after the leucine + insulin infusion. Insulin-alone and leucine + insulin infusions increased PKB phosphorylation, but leucine alone had no effect. These results show that physiological concentrations of leucine and insulin activate a key mediator of protein synthesis in human skeletal muscle. They suggest that leucine stimulates protein synthesis through a nutrient signaling mechanism independent of insulin, raising the possibility that administration of branched-chain amino acids may improve protein synthesis in insulin-resistant states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise.

BCAAs (leucine, isoleucine, and valine), particularly leucine, have anabolic effects on protein metabolism by increasing the rate of protein synthesis and decreasing the rate of protein degradation in resting human muscle. Also, during recovery from endurance exercise, BCAAs were found to have anabolic effects in human muscle. These effects are likely to be mediated through changes in signaling...

متن کامل

Burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle.

The molecular bases underlying burn- or critical illness-induced insulin resistance still remain unclarified. Muscle protein catabolism is a ubiquitous feature of critical illness. Akt/PKB plays a central role in the metabolic actions of insulin and is a pivotal regulator of hypertrophy and atrophy of skeletal muscle. We therefore examined the effects of burn injury on insulin-stimulated Akt/PK...

متن کامل

Impaired muscle glycogen synthase in type 2 diabetes is associated with diminished phosphatidylinositol 3-kinase activation.

Insulin signaling pathways potentially involved in regulation of skeletal muscle glycogen synthase were compared in differentiated human muscle cell cultures from nondiabetic and type 2 diabetic patients. Insulin stimulation of glycogen synthase activity as well as phosphorylation of MAPK, p70 S6 kinase, and protein kinase B (Akt) were blocked by the phosphatidylinositol 3-kinase inhibitors wor...

متن کامل

3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro

BACKGROUND The p70 S6 kinase, an enzyme critical for cell-cycle progression through the G1 phase, is activated in vivo by insulin and mitogens through coordinate phosphorylation at multiple sites, regulated by signaling pathways, some of which depend on and some of which are independent of phosphoinositide 3-kinase (Pl 3-kinase). It is not known which protein kinases phosphorylate and activate ...

متن کامل

Unlike insulin, amino acids stimulate p70S6K but not GSK-3 or glycogen synthase in human skeletal muscle.

Insulin stimulates muscle glucose disposal via both glycolysis and glycogen synthesis. Insulin activates glycogen synthase (GS) in skeletal muscle by phosphorylating PKB (or Akt), which in turn phosphorylates and inactivates glycogen synthase kinase 3 (GSK-3), with subsequent activation of GS. A rapamycin-sensitive pathway, most likely acting via ribosomal 70-kDa protein S6 kinase (p70(S6K)), h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 281 3  شماره 

صفحات  -

تاریخ انتشار 2001